Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Arch Toxicol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689008

RESUMO

The ongoing transition from chemical hazard and risk assessment based on animal studies to assessment relying mostly on non-animal data, requires a multitude of novel experimental methods, and this means that guidance on the validation and standardisation of test methods intended for international applicability and acceptance, needs to be updated. These so-called new approach methodologies (NAMs) must be applicable to the chemical regulatory domain and provide reliable data which are relevant to hazard and risk assessment. Confidence in and use of NAMs will depend on their reliability and relevance, and both are thoroughly assessed by validation. Validation is, however, a time- and resource-demanding process. As updates on validation guidance are conducted, the valuable components must be kept: Reliable data are and will remain fundamental. In 2016, the scientific community was made aware of the general crisis in scientific reproducibility-validated methods must not fall into this. In this commentary, we emphasize the central importance of ring trials in the validation of experimental methods. Ring trials are sometimes considered to be a major hold-up with little value added to the validation. Here, we clarify that ring trials are indispensable to demonstrate the robustness and reproducibility of a new method. Further, that methods do fail in method transfer and ring trials due to different stumbling blocks, but these provide learnings to ensure the robustness of new methods. At the same time, we identify what it would take to perform ring trials more efficiently, and how ring trials fit into the much-needed update to the guidance on the validation of NAMs.

2.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686053

RESUMO

In contrast to genotoxic carcinogens, there are currently no internationally agreed upon regulatory tools for identifying non-genotoxic carcinogens of human relevance. The rodent cancer bioassay is only used in certain regulatory sectors and is criticized for its limited predictive power for human cancer risk. Cancer is due to genetic errors occurring in single cells. The risk of cancer is higher when there is an increase in the number of errors per replication (genotoxic agents) or in the number of replications (cell proliferation-inducing agents). The default regulatory approach for genotoxic agents whereby no threshold is set is reasonably conservative. However, non-genotoxic carcinogens cannot be regulated in the same way since increased cell proliferation has a clear threshold. An integrated approach for the testing and assessment (IATA) of non-genotoxic carcinogens is under development at the OECD, considering learnings from the regulatory assessment of data-rich substances such as agrochemicals. The aim is to achieve an endorsed IATA that predicts human cancer better than the rodent cancer bioassay, using methodologies that equally or better protect human health and are superior from the view of animal welfare/efficiency. This paper describes the technical opportunities available to assess cell proliferation as the central gateway of an IATA for non-genotoxic carcinogenicity.


Assuntos
Carcinogênese , Carcinógenos , Animais , Humanos , Carcinógenos/toxicidade , Agroquímicos , Bioensaio , Proliferação de Células
3.
Front Toxicol ; 5: 1220998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492623

RESUMO

Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.

4.
Front Endocrinol (Lausanne) ; 14: 1126880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168981

RESUMO

The most prevalent liver disease in humans is non-alcoholic fatty liver disease, characterised by excessive hepatic fat accumulation, or steatosis. The western diet and a sedentary lifestyle are considered to be major influences, but chemical exposure may also play a role. Suspected environmental chemicals of concern include pesticides, plasticizers, metals, and perfluorinated compounds. Here we present a detailed literature analysis of chemicals that may (or may not) be implicated in lipid accumulation in the liver, to provide a basis for developing and optimizing human steatosis-relevant in vitro test methods. Independently collated and reviewed reference and proficiency chemicals are needed to assist in the test method development where an assay is intended to ultimately be taken forward for OECD Test Guideline development purposes. The selection criteria and considerations required for acceptance of proficiency chemical selection for OECD Test Guideline development. (i.e., structural diversity, range of activity including negatives, relevant chemical sectors, global restrictions, etc.) is described herein. Of 160 chemicals initially screened for inclusion, 36 were prioritized for detailed review. Based on the selection criteria and a weight-of-evidence basis, 18 chemicals (9 steatosis inducers, 9 negatives), including some environmental chemicals of concern, were ranked as high priority chemicals to assist in vitro human steatosis test method optimisation and proficiency testing, and inform potential subsequent test method (pre-)validation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente
5.
Front Toxicol ; 5: 1140698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923365

RESUMO

The ethical needs and concerns with use and sourcing of human materials, particularly serum, in OECD in vitro test guidelines were explored in a dedicated international workshop held in 2019. The health-related aspects of the donation procedure, including tissue screening, donor health, laboratory work health protection, permission from the donor for commercial use, payment of the donors and the potential for exploitation of low-income populations and data protection of the donors; supply, availability, and competition with clinical needs; traceability of the serum and auditability/GLP needs for the Test Guideline Programme, were examined. Here we provide the recommendations of the workshop with respect to the use of human serum, and potentially other human reagents, specifically with regard to test method development for OECD Test Guideline utility as part of the Mutual Acceptance of Data requirement across all OECD member countries. These include informed donor consent terminology, a checklist of human serum information requirements to be included with the Good Laboratory Practise report, and suitable sources for human serum to ensure waste supplies are used, that can no longer be used for medical purposes, ensuring no competition of supply for essential medical use.

6.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361516

RESUMO

With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.


Assuntos
Carcinógenos , Transcriptoma , Humanos , Carcinógenos/toxicidade , Bioensaio , Carcinogênese , Testes de Carcinogenicidade/métodos
7.
Regul Toxicol Pharmacol ; 135: 105261, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36103951

RESUMO

New Approach Methodologies (NAMs) are considered to include any in vitro, in silico or chemistry-based method, as well as the strategies to implement them, that may provide information that could inform chemical safety assessment. Current chemical legislation in the European Union is limited in its acceptance of the widespread use of NAMs. The European Partnership for Alternative Approaches to Animal Testing (EPAA) therefore convened a 'Deep Dive Workshop' to explore the use of NAMs in chemical safety assessment, the aim of which was to support regulatory decisions, whilst intending to protect human health. The workshop recognised that NAMs are currently used in many industrial sectors, with some considered as fit for regulatory purpose. Moreover, the workshop identified key discussion points that can be addressed to increase the use and regulatory acceptance of NAMs. These are based on the changes needed in frameworks for regulatory requirements and the essential needs in education, training and greater stakeholder engagement as well the gaps in the scientific basis of NAMs.


Assuntos
Alternativas aos Testes com Animais , Testes de Toxicidade , Animais , União Europeia , Humanos , Indústrias , Medição de Risco , Testes de Toxicidade/métodos
8.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886950

RESUMO

The Transformics Assay is an in vitro test which combines the BALB/c 3T3 Cell Transformation Assay (CTA) with microarray transcriptomics. It has been shown to improve upon the mechanistic understanding of the CTA, helping to identify mechanisms of action leading to chemical-induced transformation thanks to RNA extractions in specific time points along the process of in vitro transformation. In this study, the lowest transforming concentration of the carcinogenic benzo(a)pyrene (B(a)P) has been tested in order to find molecular signatures of initial events relevant for oncotransformation. Application of Enrichment Analysis (Metacore) to the analyses of the results facilitated key biological interpretations. After 72 h of exposure, as a consequence of the molecular initiating event of aryl hydrocarbon receptor (AhR) activation, there is a cascade of cellular events and microenvironment modification, and the immune and inflammatory responses are the main processes involved in cell response. Furthermore, pathways and processes related to cell cycle regulation, cytoskeletal adhesion and remodeling processes, cell differentiation and transformation were observed.


Assuntos
Transformação Celular Neoplásica , Receptores de Hidrocarboneto Arílico , Animais , Células 3T3 BALB , Benzo(a)pireno/toxicidade , Carcinogênese/induzido quimicamente , Carcinógenos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Microambiente Tumoral
10.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681626

RESUMO

Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.


Assuntos
Metilação de DNA , Epigenômica , Histonas/metabolismo , Animais , Arsenicais/farmacologia , Metilação de DNA/efeitos dos fármacos , Substâncias Perigosas/toxicidade , Humanos , Metiltransferases/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos
11.
Ecotoxicol Environ Saf ; 223: 112585, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34365212

RESUMO

The fish acute toxicity test (TG203; OECD, 2019) is frequently used and highly embedded in hazard and risk assessment globally. The test estimates the concentration of a chemical that kills 50% of the fish (LC50) over a 96 h exposure and is considered one of the most severe scientific procedures undertaken. Over the years, discussions at the Organisation for Economic Co-operation and Development (OECD) have resulted in changes to the test which reduce the number of fish used, as well as the development of a (potential) replacement test (TG236, OECD, 2013). However, refinement of the mortality endpoint with an earlier (moribundity) endpoint was not considered feasible during the Test Guideline's (TG) last update in 2019. Several stakeholders met at a UK-based workshop to discuss how TG203 can be refined, and identified two key opportunities to reduce fish suffering: (1) application of clinical signs that predict mortality and (2) shortening the test duration. However, several aspects need to be addressed before these refinements can be adopted. TG203 has required recording of major categories of sublethal clinical signs since its conception, with the option to record more detailed signs introduced in the 2019 update. However, in the absence of guidance, differences in identification, recording and reporting of clinical signs between technicians and laboratories is likely to have generated piecemeal data of varying quality. Harmonisation of reporting templates, and training in clinical sign recognition and recording are needed to standardise clinical sign data. This is critical to enable robust data-driven detection of clinical signs that predict mortality. Discussions suggested that the 96 h duration of TG203 cannot stand up to scientific scrutiny. Feedback and data from UK contract research organisations (CROs) conducting the test were that a substantial proportion of mortalities occur in the first 24 h. Refinement of TG203 by shortening the test duration would reduce suffering (and test failure rate) but requires a mechanism to correct new results to previous 96 h LC50 data. The actions needed to implement both refinement opportunities are summarised here within a roadmap. A shift in regulatory assessment, where the 96 h LC50 is a familiar base for decisions, will also be critical.


Assuntos
Peixes , Organização para a Cooperação e Desenvolvimento Econômico , Animais , Humanos , Dose Letal Mediana , Medição de Risco , Testes de Toxicidade Aguda
12.
Food Chem Toxicol ; 152: 112206, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33887398

RESUMO

We describe the characterisation and validation of an androgen receptor (AR) transactivation assay for detection of AR agonists and antagonists using a stably transfected human prostate cancer cell line. This 22Rv1/mouse mammary tumour virus glucocorticoid knock-out cell line based AR transactivation assay was validated by criteria in Organisation for Economic Cooperation and Development Guidance Document 34 to determine if the assay performed equally well to the AR EcoScreen Assay included in Test Guideline for AR Transactivation (OECD TG 458). There was no Glucocorticoid Receptor (GR) crosstalk, and no changes in the AR DNA sequence in cells after the successful knock out of GR. Subsequently, the concordance of classifications of the 22 test chemicals was 100% in all laboratories. The AR agonistic and antagonistic inter-laboratory coefficients of variation based on log[10% effect for 10 nM DHT, PC10] and log[inhibitory response of 800 pM DHT by at 30%, IC30] from comprehensive tests were 2.75% and 2.44%, respectively. The AR agonist/antagonist test chemical classifications were consistent across AR EcoScreen ARTA assay data for 82/89%, and the balanced accuracy, sensitivity, and specificity were 83/90%, 88/100% and 78/80%, respectively. This assay was successfully validated and was approved for inclusion in TG 458 in 2020.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Humanos , Vírus do Tumor Mamário do Camundongo , Camundongos , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/genética , Reprodutibilidade dos Testes , Ativação Transcricional/efeitos dos fármacos
13.
Regul Toxicol Pharmacol ; 118: 104789, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33035627

RESUMO

Currently the only methods for non-genotoxic carcinogenic hazard assessment accepted by most regulatory authorities are lifetime carcinogenicity studies. However, these involve the use of large numbers of animals and the relevance of their predictive power and results has been scientifically challenged. With increased availability of innovative test methods and enhanced understanding of carcinogenic processes, it is believed that tumour formation can now be better predicted using mechanistic information. A workshop organised by the European Partnership on Alternative Approaches to Animal Testing brought together experts to discuss an alternative, mechanism-based approach for cancer risk assessment of agrochemicals. Data from a toolbox of test methods for detecting modes of action (MOAs) underlying non-genotoxic carcinogenicity are combined with information from subchronic toxicity studies in a weight-of-evidence approach to identify carcinogenic potential of a test substance. The workshop included interactive sessions to discuss the approach using case studies. These showed that fine-tuning is needed, to build confidence in the proposed approach, to ensure scientific correctness, and to address different regulatory needs. This novel approach was considered realistic, and its regulatory acceptance and implementation can be facilitated in the coming years through continued dialogue between all stakeholders and building confidence in alternative approaches.


Assuntos
Agroquímicos/efeitos adversos , Alternativas aos Testes com Animais , Testes de Carcinogenicidade , Transformação Celular Neoplásica/induzido quimicamente , Neoplasias/induzido quimicamente , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Congressos como Assunto , Humanos , Testes de Mutagenicidade , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Medição de Risco , Testes de Toxicidade Subcrônica , Toxicocinética
14.
Arch Toxicol ; 94(8): 2899-2923, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32594184

RESUMO

While regulatory requirements for carcinogenicity testing of chemicals vary according to product sector and regulatory jurisdiction, the standard approach starts with a battery of genotoxicity tests (which include mutagenicity assays). If any of the in vivo genotoxicity tests are positive, a lifetime rodent cancer bioassay may be requested, but under most chemical regulations (except plant protection, biocides, pharmaceuticals), this is rare. The decision to conduct further testing based on genotoxicity test outcomes creates a regulatory gap for the identification of non-genotoxic carcinogens (NGTxC). With the objective of addressing this gap, in 2016, the Organization of Economic Cooperation and Development (OECD) established an expert group to develop an integrated approach to the testing and assessment (IATA) of NGTxC. Through that work, a definition of NGTxC in a regulatory context was agreed. Using the adverse outcome pathway (AOP) concept, various cancer models were developed, and overarching mechanisms and modes of action were identified. After further refining and structuring with respect to the common hallmarks of cancer and knowing that NGTxC act through a large variety of specific mechanisms, with cell proliferation commonly being a unifying element, it became evident that a panel of tests covering multiple biological traits will be needed to populate the IATA. Consequently, in addition to literature and database investigation, the OECD opened a call for relevant assays in 2018 to receive suggestions. Here, we report on the definition of NGTxC, on the development of the overarching NGTxC IATA, and on the development of ranking parameters to evaluate the assays. Ultimately the intent is to select the best scoring assays for integration in an NGTxC IATA to better identify carcinogens and reduce public health hazards.


Assuntos
Testes de Carcinogenicidade/normas , Carcinógenos/toxicidade , Animais , Consenso , Humanos , Reprodutibilidade dos Testes , Medição de Risco
15.
ALTEX ; 36(4): 623-633, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210278

RESUMO

The use of in vitro alternative methods is a promising approach to characterize the hazardous properties of environmental chemical mixtures, including urban airborne particulate matter (PM). The aim of this study was to examine seasonal differences in the toxic and transforming potential of PM samples, by using the in vitro cell transformation assay in Bhas 42 cells for the prediction of potential carcinogenic effects. Bhas 42 cells are already initiated, and the v-Ha-ras transfection, together with genetic modification following the immortalization process, makes them a valuable model to study the late steps of cellular transformation leading to the acquisition of the malignant phenotype. Exposure to organic extracts of PM1 and PM2.5 induced dose-related effects. The transforming and cytotoxic properties are related to the amount of PM collected during the sampling campaign and associated with the concentrations of polycyclic aromatic hydrocarbons (PAHs) in the samples. All the samples induced cell transformation following prolonged exposure of 2 weeks. Our results support the utility of the in vitro top-down approach to characterise the toxicity of real mixtures, thereby supporting regulators in the decision-making process. The results also identify the need for appropriate assay selection within the in vitro testing strategy to address the complexity of the final adverse outcomes.


Assuntos
Poluentes Atmosféricos/toxicidade , Transformação Celular Neoplásica/efeitos dos fármacos , Misturas Complexas/toxicidade , Gestão da Segurança/métodos , Animais , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos BALB C/embriologia , Material Particulado/toxicidade , Fenótipo , Estações do Ano
16.
ALTEX ; 36(2): 163-176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30785210

RESUMO

The number and scope of Organisation for Economic Cooperation and Development (OECD) in vitro test guidelines (TGs) are increasing, in an effort to both improve human relevance and replace in vivo animal testing.  In vitro test methods being developed for TG use are increasing the use of human based reagents, in combination with, or replacing animal derived reagents, and demand for human reagents is likely to grow in the near future.  There are a range of issues associated with the ethical use of human reagents, particularly human serum, in the adaptation and development of in vitro TGs, especially to ensure that there is no human exploitation, legal requirements are adhered to, and that the origin of the reagent is assured. To address these concerns, the OECD has instigated a workshop on ethics, sources, availability and traceability of human based reagents for TG purposes, to be held in March, 2019. The focus is to provide guidance on acceptable sources of human serum for use in in vitro TGs, in terms of donor ethics and informed consent regarding commercial use and Quality Control for safety and consistent performance, with a view to providing guidance to support the adaptation and/or development of in vitro TGs using human reagents, and to ensure that in reporting the test results to regulators, clearly defined ethical and traceability aspects are adequately addressed, for the Mutual Acceptance of Data principle to be accepted in all OECD member countries. This thought-starter provides a discussion basis to achieve those objectives.


Assuntos
Guias como Assunto , Técnicas In Vitro/ética , Indicadores e Reagentes , Organização para a Cooperação e Desenvolvimento Econômico/normas , Soro , Alternativas aos Testes com Animais , União Europeia , Humanos , Indicadores e Reagentes/provisão & distribuição , Controle de Qualidade
18.
Carcinogenesis ; 39(7): 955-967, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29554273

RESUMO

The development of alternative methods to animal testing is a priority in the context of regulatory toxicology. Carcinogenesis is a field where the demand for alternative methods is particularly high. The standard rodent carcinogenicity bioassay requires a large use of animals, high costs, prolonged duration and shows several limitations, which can affect the comprehension of the human relevance of animal carcinogenesis. The cell transformation assay (CTA) has long been debated as a possible in vitro test to study carcinogenesis. This assay provides an easily detectable endpoint of oncotransformation, which can be used to anchor the exposure to the acquisition of the malignant phenotype. However, the current protocols do not provide information on either molecular key events supporting the carcinogenesis process, nor the mechanism of action of the test chemicals. In order to improve the use of this assay in the integrated testing strategy for carcinogenesis, we developed the transformics method, which combines the CTA and transcriptomics, to highlight the molecular steps leading to in vitro malignant transformation. We studied 3-methylcholanthrene (3-MCA), a genotoxic chemical able to induce in vitro cell transformation, at both transforming and subtransforming concentrations in BALB/c 3T3 cells and evaluated the gene modulation at critical steps of the experimental protocol. The results gave evidence for the potential key role of the immune system and the possible involvement of the aryl hydrocarbon receptor (AhR) pathway as the initial steps of the in vitro transformation process induced by 3-MCA, suggesting that the initiating events are related to non-genotoxic mechanisms.


Assuntos
Carcinógenos/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Metilcolantreno/toxicidade , Células 3T3 , Animais , Bioensaio , Carcinogênese/induzido quimicamente , Testes de Carcinogenicidade/métodos , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Hidrocarboneto Arílico/metabolismo
19.
ALTEX ; 34(2): 235-252, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27776202

RESUMO

An approach to systematically describe the uncertainties and complexity of the standard animal testing and assessment approach for carcinogenicity is explored by using a OECD Guidance Document that was originally developed for reporting defined in vitro approaches to testing and assessment. The format is suitable for this re-purposing and it appears that the potential multitude of approaches for integrating and interpreting data from standard animal testing may ultimately be conceptually similar to the challenge of integrating relevant in vitro and in silico data. This structured approach shall allow 1) fostering interest in developing improved defined in silico and in vitro approaches; 2) the definition of what type of effects should be predicted by the new approach; 3) selection of the most suitable reference data and assessments; 4) definition of the weight that the standard animal reference data should have compared to human reference data and mechanistic information in the context of assessing the fitness of the new in vitro and in silico approach; 5) definition of a benchmark for the minimum performance of the new approach, based on a conceptual recognition that correlation of alternative assessment results with reference animal results is limited by the uncertainties and complexity of the latter. A longer term perspective is indicated for evolving the definition of adversity for classification and regulatory purposes. This work will be further discussed and developed within the OECD expert group on non-genotoxic carcinogenicity IATA development.


Assuntos
Testes de Carcinogenicidade/métodos , Testes de Carcinogenicidade/normas , Incerteza , Alternativas aos Testes com Animais , Animais , Benchmarking , Simulação por Computador , Humanos , Técnicas In Vitro , Testes de Mutagenicidade/métodos , Medição de Risco/métodos
20.
Crit Rev Toxicol ; 46(8): 676-700, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27278298

RESUMO

Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.


Assuntos
Exposição Ambiental , Poluentes Ambientais/toxicidade , Epigênese Genética/efeitos dos fármacos , Animais , Humanos , Saúde Pública , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA